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Tracial approximation

Let T'AC be the class of C*-algebras which can
be tracially approximated by C*-algebras in the class
C in the sense of Elliott and Niu: for any £ > 0,
any finite set 7 C A, and any non-zero ¢ € At
there exist a non-zero projection p € A and a sub-

C*-algebra C' C A such that C € C , 1¢ = p, and
for all z € F,

L |lzp —pz| <e

2. pxp €. C, and

3. 1 —p is Murray-von Neumann equivalent to a
projection in aAa.
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e (Lin 01) When C is the set of all finite dimensional
C*-algebras, then a C*-algebra A € T'AC is called

a traicial approximated finite dimensional algebra,
i.e., TAF-C*-algebras.

e (Lin 04) When C is the set of all interval algebras,
that is, C*-algebras isomorphic to F' ® C|0, 1] for
a finite dimensional algebra F', then a C*-algebra
A € TAC is called a traicial approximated interval
algebra, i.e., TAI-C*-algebras.

Note that the classification theorems for TAF-
algebras and TAl-algebras were given by Lin in 01
and 04, respectively.

In this talk we show that for any simple C*-algebra
A € TAC an an action « of a finite group G if a has
the tracial Rokhlin property, then the crossed product
algebra C*(G, A, a) belongs to the class T'AC.
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Rokhlin property

The Rokhlin property for finite group actions is
formulated by Izumi as follows:

Definition 1 (lzumi 04). Let A be a unital C*-
algebra, and let a: G — Aut(A) be an action of a
finite group G on A. We say that « has the strict
Rokhlin property if for every finite set ' C A, and
every € > 0, there are mutually orthogonal projections
eqg € A for g € G such that:

L. |lag(en) —egn|| < € for all g, h € G.

2. |lega —aey|| <eforallge G andalla e F.

3. D secc =1
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The tracial Rokhlin property weakens Condition (3)
of this definition:

Definition 2 (Phillips 06). Let A be an infinite
dimensional simple unital C*-algebra, and let a: G —
Aut(A) be an action of a finite group G on A. We say
that « has the tracial Rokhlin property if for every
finite set F' C A, every € > 0, and every positive
element z € A with ||z|| = 1, there are mutually
orthogonal projections e, € A for g € G such that:

1. ||ag(en) —egn|| <€ forall g,h €G.

2. |lega —aey|| <€ forallge G and all a € F.

3. Withe = deG ey, the projection 1 —e is Murray-
von Neumann equivalent to a projection in the

hereditary subalgebra of A generated by z. @L

4. With e as in (3), we have |lexe|]| > 1 —e.

When A is finite, we do not need Condition (4)
of Definition 2:
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Example 3. Let M,00 = ®%2 ;M,(C) and

()\1 ) R T Ty 0\

0 X @ -« 0
a= Ad] : W H. O ],
\0 PUGEETR )\n)

where {\;}?_, is the root of the unit. Then a be the
automorphism of order n on M, and « has the
Rokhlin property. [

We also construct an action which does not have
the Rokhlin property.
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Proposition 4 (Phillips 06). Let D be an infinite
tensor product C*-algebra and let a € Aut(D) be an
automorphism of oreder 2, of the form

D= ®%O=1Mk(n)(0) and o = ®20.__1Ad(pn =i );

with k(n) € N and where p,,q, € My,)(C) are
projections with p, + ¢, = 1 and rank(p,) >
rank(q,) for all n € N. Set

- rank(p,) — rank(q,,)

Ay =
rank(p,) + rank(qy)

for n € N and, for m < n Almn) =
N1 Xint 8 © #9 Ay AN Al 00) = limay, o K, ).
Then the followings are equivalent:

(1) The action « has the Roklin property.

(2) There are infinitely many n € N such that
rank(p,) = rank(q,), i.e. A, =0.

(3) C*(Z2, D, ) is a UHF algebra.
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Proposition 5 (Phillips 06). Let oo € Aut(D) be
a product type automorphism of order 2 as in
Proposition 4. Then the followings are equivalent:

(1) The action a has the tracial Rokhlin property.

(2) A(m,00) =0 for all m.
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Basic Lemma

Lemma 6 (Phillips 06, Archey 09). Let% be an

infinite di ' tably finite simple C*-algebra
with the (Property SP? Let G be a&finite group of
order n an G — Aut(A) be an action of

G with the tracial Rokhlin property. Then for any

e > 0, eveseB=2=, any finite set F € C*(G, A, o),
and any non-zero z € (C*(G, A, a))T, there exist a
non-zero projection e € A C A x, G, a unital C*-
subalgebra D-C C*(G, A, a), a projection f € A and
an isomorphism ¢: M, ® fAf — D, such that

e Forevery a € F |lea — ael| < ne.

o With (e,n) for g, h € G being a system of matrix
units for M,, we have ¢(e;; ® a) = a for all
a€ fAf and ¢(e;q®1) € Aforge G.

o With (egy) as in (1), we have |d(eyy ® a) —
ag(a)|| < €lla|| for all a € fAF.

e For every a € F there exist by, by € D such that
lea=b1|| <&, [lae—bo|| < eand |jbal], [|b2]| < [la.

® €= secPlegg ®1).
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e 1 — e is Murray-von Neumann equivalent to a
projection in 2(C*(G, A, a))z.

Here a C*-algebra A is said to have the Property
SP if every nonzero hereditary subalgebra of A has
nonzero projection.
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Main Theorem

Theorem 7. Let C be a class of infinite dimensional
stably finite separable unital C*-algebras which is
closed under the follwoing conditions:

(1) AeC and B A, then B €.
(2) f AeC and n € N, then M, (A) € C.

(3) If A€ C and p € A is a nonzero projection, then
pAp € C.

For any simple C*-algebra A € TAC and an
action « of a finite group G if o has the tracial

Rokhlin property, then the crossed product algebra
C*(G, A, @) belongs to the class T'AC.

- Typeset by Foil TEX — 10



Sketch of the proof

1. (Phillips 06) Since a has the tracial Rokhlin
property, A has the property SP or a has the
strictly Rokhlin property.

2. Case 1: « has the strictly Rokhlin property: Then
C*(G, A, a) € TAC by [Osaka-Phillips 07].

3. Case 2: A has the property SP: There exists
a non-zero projection ¢ € A which is Murray-
von Neumann equivalent in C*(G,A,«a) to a

projection in z(C*(G, A, a))z by [Osaka 01].

Since A is simple, take orthogonal projections
q1, g2 with g1, g2 < ¢ by the standard argument.

Apply Basic Lemma. Do some standard argument
in the tracial topological rank theory.
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Theorem 8. Let A be an infinite dimensional simple
separable unital C*-algebra with stable rank one and
let a: G — Aut(A) be an action of a finite group G
with tracial Rokhlin property. Then C*(G, A, ) has
stable rank one.

This sharpens result by [Archey 09] a little. In
her paper she puts two more conditions

1. A has real rank zero.

2. The order on projections over A is determined
by traces, i.e., whenever p,q € My (A) are
projections such that 7(p) < 7(q) for all 7 €
T(A), then p < q.

The proof is done by using Theorem 7 and the
following result by Elliott-Niu:

Theorem 9 (Elliott-Niu 08). Let C be a class of
unital C*-algebras with stable rank one. Then any
simple C*-algebra in the class T'AC has stable rank
one.
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Tracial topological rank

Definition 10. Let 7(© be the calss of all finite
dimensional C*-algebras and let 7(®) be the class of
all C*-algebras with the form pM,,(C(X))pn, where
X is a finite CW complex with dimension k& and
p € M,(C(X)) is a projection.

A simple unital C*-algebra A is said to have
tracial topological rank no more than k if for any’Set

F C A, and € > 0 and any nonzero positive element
a € A, there exists a C*-subalgebra B C A with

B € T and idg = p such that

(1) |lzp — pz|| <&
(2) pzp €. k(} and

(3) 1 — p is Murray-von Neumann equivalent to a
projection in aAa.
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Theorem 11 (Osaka-Phillips 07). Let A be an infinite
dimensional simple unital C*-algebra with tracial
topological rank more than or equal to %k, and
a: G — Aut(A) is an action of a finite group G
with tracial Rokhlin property. Then C*(G, A, @) has
tracial topological rank more that or equal to k.

Proof. Let C be the set 7). Then 7 is closed
under three conditions in Theorem 7. Then from
Theorem 7 C*(G, A, «) belongs to the class TAC.
This means that C*(G, A, «) has tracial topological

rank more that or equal to k£ from the Definition 10.
O]
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Further topic

In this section we discuss about Rokhlin property
for integer Z.

Definition 12. Let A be a simple unital C*-algebra
and let o € Aut(A). We say a has the tracial cyclic
Rokhlin property if for every finite set F C A, every
e > 0, every n € N, and every nonzero positive
element z € A, there are mutually orthogonal
projections eg, e1,...,e, € A such that

(1) [|a(ej) — ejr1]l < € for 0 < j < n, where €=
€0-

(2) |leja —aej]| <efor0<j<mnandforallackF.

(3) With e = > je;, 1 — e is Murray-von
Neumann equivalent to a nonzero projection in
z(C*(Z, A, a)z.

— Typeset by Foil TEX — 15



Note that when a simple unital separable C*-
algebra A has tracial topological rank zero, an
automorphism with the Rokhlin property in the sense
of Kishimoto, or with the tracial Rokhlin property in
the sense of Osaka-Phillips, has the tracial cyclic
Rokhlin property (Lin-Osaka 04). We can also
construct an automorphism « on a simple unital
AT-algebra with the tracial cyclic Rokhlin property
from an isomorphism 71 : K1(A) — K1(A) such that
a. = 71 (Lin-Osaka 06).
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The following is a Key Lemma for characterization
of crossed products by Z.

Proposition 13. Let A be a simple unital C*-algebra
with Property SP. Suppose that o € Aut(A) has the
tracial cyclic Rokhlin property. Then for any € > 0,
a finite set F' C C5(Z, A, ), and a nonzero positive
element z € Axfﬁ, there exist a projectione € A C
A X Z, a unital subslgebra D C eC*(Z, A, a)e, and
a projection f € A, and an isomorphism ¢: My ®
fAf — D such that

(1) With matrix units (e;;) for My, we have ¢(e11 ®
a) = a for a € fAf and ¢(e;; ® e) € A for
i=1,2

(2) ||p(e22 ® a) — afa)| < €lla|| for all a € fAS.

(3) e= Z?=1 P(ei ® f).

(4) eae C. D for all a € F.

(5) 1—eis Murray-von Neumann equivalent in Ax,G
a projection in 2zC*(Z, A, a)z.
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Theorem 14. Let C be a class of infinite dimensional
stably finite separable unital C*-algebras which is
closed under the follwoing conditions:

(1) Ae€C and B= A, then B €C.
(2) If AeC and n € N, then M,(A) €C.

(3) If A€ C and p € A is a nonzero projection, then
pAp € C.

For any simple C*-algebra A € T'AC with Property
SP if an automorphism « has the tracial cyclic
Rokhlin property, then the crossed product algebra
C*(Z, A, a) belongs to the class T'AC.

Corollary 15. Let A be an infinite dimensional
simple separable unital C*-algebra with stable rank
one and Property SP, and let a € Aut(A) be an
automorphism with tracial cyclic Rokhlin property.
Then C*(Z, A, a) has stable rank one.
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Theorem 16. Let A be an infinite dimensional
simple unital C*-algebra with tracial topological rank
no more than or equal to k, and o € Aut(A) is an
automorphism with tracial cyclic Rokhlin property.

Then C*(Z, A, ) has tracial topological ranWore
that or equal to %. o
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