Tracial Approximation for crossed products by finite groups with the tracial Rokhlin property

Hiroyuki Osaka (Ritsumeikan University, Japan)

Special week on Operator algebras June 22 - June 26, 2009

Tracial approximation

Let $TA\mathcal{C}$ be the class of C*-algebras which can be tracially approximated by C*-algebras in the class \mathcal{C} in the sense of Elliott and Niu: for any $\varepsilon>0$, any finite set $\mathcal{F}\subset A$, and any non-zero $a\in A^+$, there exist a non-zero projection $p\in A$ and a sub-C*-algebra $C\subset A$ such that $C\in\mathcal{C}$, $1_C=p$, and for all $x\in\mathcal{F}$,

1.
$$||xp - px|| < \varepsilon$$

2.
$$pxp \in_{\varepsilon} C$$
, and

3. 1-p is Murray-von Neumann equivalent to a projection in \overline{aAa} .

- (Lin 01) When C is the set of all finite dimensional C*-algebras, then a C*-algebra A ∈ TAC is called a traicial approximated finite dimensional algebra, i.e., TAF-C*-algebras.
- (Lin 04) When $\mathcal C$ is the set of all interval algebras, that is, C*-algebras isomorphic to $F\otimes C[0,1]$ for a finite dimensional algebra F, then a C*-algebra $A\in TA\mathcal C$ is called a traicial approximated interval algebra, i.e., TAI-C*-algebras.

Note that the classification theorems for TAFalgebras and TAI-algebras were given by Lin in 01 and 04, respectively.

In this talk we show that for any simple C*-algebra $A \in TA\mathcal{C}$ an an action α of a finite group G if α has the tracial Rokhlin property, then the crossed product algebra $C^*(G,A,\alpha)$ belongs to the class $TA\mathcal{C}$.

Rokhlin property

The Rokhlin property for finite group actions is formulated by Izumi as follows;

Definition 1 (Izumi 04). Let A be a unital C^* -algebra, and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action of a finite group G on A. We say that α has the *strict Rokhlin property* if for every finite set $F \subset A$, and every $\varepsilon > 0$, there are mutually orthogonal projections $e_g \in A$ for $g \in G$ such that:

- 1. $\|\alpha_g(e_h) e_{gh}\| < \varepsilon$ for all $g, h \in G$.
- 2. $||e_g a a e_g|| < \varepsilon$ for all $g \in G$ and all $a \in F$.
- 3. $\sum_{g \in G} e_g = 1$.

The tracial Rokhlin property weakens Condition (3) of this definition:

Definition 2 (Phillips 06). Let A be an infinite dimensional simple unital C*-algebra, and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action of a finite group G on A. We say that α has the *tracial Rokhlin property* if for every finite set $F \subset A$, every $\varepsilon > 0$, and every positive element $x \in A$ with ||x|| = 1, there are mutually orthogonal projections $e_g \in A$ for $g \in G$ such that:

- 1. $\|\alpha_g(e_h) e_{gh}\| < \varepsilon$ for all $g, h \in G$.
- 2. $||e_g a a e_g|| < \varepsilon$ for all $g \in G$ and all $a \in F$.
- 3. With $e = \sum_{g \in G} e_g$, the projection 1-e is Murray-von Neumann equivalent to a projection in the hereditary subalgebra of A generated by x.
- 4. With e as in (3), we have $||exe|| > 1 \varepsilon$.

When A is finite, we do not need Condition (4) of Definition 2:

Example 3. Let $\mathbb{M}_{n^\infty}=\otimes_{k=1}^\infty \mathbb{M}_n(\mathbf{C})$ and

$$\alpha = \bigotimes_{k=1}^{\infty} \operatorname{Ad} \left(\begin{array}{ccccc} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & 0 & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \lambda_n \end{array} \right),$$

where $\{\lambda_i\}_{i=1}^n$ is the root of the unit. Then α be the automorphism of order n on \mathbb{M}_{n^∞} , and α has the Rokhlin property.

We also construct an action which does not have the Rokhlin property.

Proposition 4 (Phillips 06). Let D be an infinite tensor product C*-algebra and let $\alpha \in \operatorname{Aut}(D)$ be an automorphism of oreder 2, of the form

$$D = \bigotimes_{n=1}^{\infty} \mathbb{M}_{k(n)}(\mathbf{C}) \text{ and } \alpha = \bigotimes_{n=1}^{\infty} \mathrm{Ad}(p_n - q_n),$$

with $k(n) \in \mathbf{N}$ and where $p_n, q_n \in \mathbb{M}_{k(n)}(\mathbf{C})$ are projections with $p_n + q_n = 1$ and $\operatorname{rank}(p_n) \geq \operatorname{rank}(q_n)$ for all $n \in \mathbf{N}$. Set

$$\lambda_n = \frac{\operatorname{rank}(p_n) - \operatorname{rank}(q_n)}{\operatorname{rank}(p_n) + \operatorname{rank}(q_n)}$$

for $n \in \mathbb{N}$ and, for $m \leq n$ $\Lambda(m,n) = \lambda_{m+1}\lambda_{m+2}\cdots\lambda_n$ and $\Lambda(m,\infty) = \lim_{n\to\infty}\Lambda(m,n)$. Then the followings are equivalent:

- (1) The action α has the Roklin property.
- (2) There are infinitely many $n \in \mathbb{N}$ such that $\operatorname{rank}(p_n) = \operatorname{rank}(q_n)$, i.e. $\lambda_n = 0$.
- (3) $C^*(\mathbf{Z}_2, D, \alpha)$ is a UHF algebra.

Proposition 5 (Phillips 06). Let $\alpha \in \operatorname{Aut}(D)$ be a product type automorphism of order 2 as in Proposition 4. Then the followings are equivalent:

- (1) The action α has the tracial Rokhlin property.
- (2) $\Lambda(m,\infty)=0$ for all m.

Basic Lemma

Lemma 6 (Phillips 06, Archey 09). Let α be an infinite dimensional stably finite simple C*-algebra with the Property SP Let G be affinite group of order n and let $\alpha: G \to \operatorname{Aut}(A)$ be an action of G with the tracial Rokhlin property. Then for any $\varepsilon > 0$, every N=N, any finite set $\mathcal{F} \subset C^*(G,A,\alpha)$, and any non-zero $z \in (C^*(G,A,\alpha))^+$, there exist a non-zero projection $e \in A \subset A \rtimes_{\alpha} G$, a unital C*-subalgebra $D \subset C^*(G,A,\alpha)$, a projection $f \in A$ and an isomorphism $\phi: M_n \otimes fAf \to D$, such that

- For every $a \in \mathcal{F} \|ea ae\| < n\varepsilon$.
- With (e_{gh}) for $g,h \in G$ being a system of matrix units for M_n , we have $\phi(e_{11} \otimes a) = a$ for all $a \in fAf$ and $\phi(e_{gg} \otimes 1) \in A$ for $g \in G$.
- With (e_{gg}) as in (1), we have $\|\phi(e_{gg}\otimes a)-\alpha_g(a)\|\leq \varepsilon \|a\|$ for all $a\in fAf$.
- For every $a \in F$ there exist $b_1, b_2 \in D$ such that $\|ea-b_1\| < \varepsilon$, $\|ae-b_2\| < \varepsilon$ and $\|b_1\|, \|b_2\| \le \|a\|$.
- $e = \sum_{g \in G} \phi(e_{gg} \otimes 1)$.

• 1-e is Murray-von Neumann equivalent to a projection in $\overline{z(C^*(G,A,\alpha))z}$.

Here a C^* -algebra A is said to have the Property SP if every nonzero hereditary subalgebra of A has nonzero projection.

Main Theorem

Theorem 7. Let C be a class of infinite dimensional stably finite separable unital C^* -algebras which is closed under the following conditions:

- (1) $A \in \mathcal{C}$ and $B \cong A$, then $B \in \mathcal{C}$.
- (2) If $A \in \mathcal{C}$ and $n \in \mathbb{N}$, then $M_n(A) \in \mathcal{C}$.
- (3) If $A \in \mathcal{C}$ and $p \in A$ is a nonzero projection, then $pAp \in \mathcal{C}$.

For any simple C*-algebra $A \in TA\mathcal{C}$ and an action α of a finite group G if α has the tracial Rokhlin property, then the crossed product algebra $C^*(G,A,\alpha)$ belongs to the class $TA\mathcal{C}$.

Sketch of the proof

- 1. (Phillips 06) Since α has the tracial Rokhlin property, A has the property SP or α has the strictly Rokhlin property.
- 2. Case 1: α has the strictly Rokhlin property: Then $C^*(G, A, \alpha) \in TA\mathcal{C}$ by [Osaka-Phillips 07].
- 3. Case 2: A has the property SP: There exists a non-zero projection $q \in A$ which is Murray-von Neumann equivalent in $C^*(G,A,\alpha)$ to a projection in $\overline{z(C^*(G,A,\alpha))z}$ by [Osaka 01].

Since A is simple, take orthogonal projections q_1, q_2 with $q_1, q_2 \leq q$ by the standard argument.

Apply Basic Lemma. Do some standard argument in the tracial topological rank theory.

Theorem 8. Let A be an infinite dimensional simple separable unital C*-algebra with stable rank one and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action of a finite group G with tracial Rokhlin property. Then $C^*(G,A,\alpha)$ has stable rank one.

This sharpens result by [Archey 09] a little. In her paper she puts two more conditions

- 1. A has real rank zero.
- 2. The order on projections over A is determined by traces, i.e., whenever $p,q\in M_{\infty}(A)$ are projections such that $\tau(p)<\tau(q)$ for all $\tau\in T(A)$, then $p\preceq q$.

The proof is done by using Theorem 7 and the following result by Elliott-Niu:

Theorem 9 (Elliott-Niu 08). Let \mathcal{C} be a class of unital C*-algebras with stable rank one. Then any simple C*-algebra in the class $TA\mathcal{C}$ has stable rank one.

Tracial topological rank

Definition 10. Let $\mathcal{T}^{(0)}$ be the calss of all finite dimensional C*-algebras and let $\mathcal{T}^{(k)}$ be the class of all C*-algebras with the form $pM_n(C(X))p_n$, where X is a finite CW complex with dimension k and $p \in M_n(C(X))$ is a projection.

A simple unital C*-algebra A is said to have tracial topological rank no more than k if for any set $\mathcal{F}\subset A$, and $\varepsilon>0$ and any nonzero positive element $a\in A$, there exists a C*-subalgebra $B\subset A$ with $B\in \mathcal{T}^{(k)}$ and $id_B=p$ such that

$$(1) ||xp - px|| < \varepsilon$$

(2)
$$pxp \in_{\varepsilon} \mathcal{C}$$
, and

(3) 1-p is Murray-von Neumann equivalent to a projection in \overline{aAa} .

Theorem 11 (Osaka-Phillips 07). Let A be an infinite dimensional simple unital C*-algebra with tracial topological rank more than or equal to k, and $\alpha\colon G\to \operatorname{Aut}(A)$ is an action of a finite group G with tracial Rokhlin property. Then $C^*(G,A,\alpha)$ has tracial topological rank more that or equal to k.

Proof. Let \mathcal{C} be the set $\mathcal{T}^{(k)}$. Then $\mathcal{T}^{(k)}$ is closed under three conditions in Theorem 7. Then from Theorem 7 $C^*(G,A,\alpha)$ belongs to the class $TA\mathcal{C}$. This means that $C^*(G,A,\alpha)$ has tracial topological rank more that or equal to k from the Definition 10.

Further topic

In this section we discuss about Rokhlin property for integer ${\bf Z}$.

Definition 12. Let A be a simple unital C*-algebra and let $\alpha \in \operatorname{Aut}(A)$. We say α has the tracial cyclic Rokhlin property if for every finite set $F \subset A$, every $\varepsilon > 0$, every $n \in \mathbb{N}$, and every nonzero positive element $x \in A$, there are mutually orthogonal projections $e_0, e_1, \ldots, e_n \in A$ such that

- (1) $\|\alpha(e_j) e_{j+1}\| < \varepsilon$ for $0 \le j \le n$, where $e_{n+1} = e_0$.
- (2) $||e_j a a e_j|| < \varepsilon$ for $0 \le j \le n$ and for all $a \in F$.
- (3) With $e=\sum_{j=0}^n e_j$, 1-e is Murray-von Neumann equivalent to a nonzero projection in $\overline{x(C^*(\mathbf{Z},A,\alpha)x}$.

Note that when a simple unital separable C*-algebra A has tracial topological rank zero, an automorphism with the Rokhlin property in the sense of Kishimoto, or with the tracial Rokhlin property in the sense of Osaka-Phillips, has the tracial cyclic Rokhlin property (Lin-Osaka 04). We can also construct an automorphism α on a simple unital AT-algebra with the tracial cyclic Rokhlin property from an isomorphism $\gamma_1\colon K_1(A)\to K_1(A)$ such that $\alpha_*=\gamma_1$ (Lin-Osaka 06).

The following is a Key Lemma for characterization of crossed products by ${\bf Z}$.

Proposition 13. Let A be a simple unital C*-algebra with Property SP. Suppose that $\alpha \in Aut(A)$ has the tracial cyclic Rokhlin property. Then for any $\varepsilon > 0$, a finite set $F \subset C_2^*(\mathbf{Z}, A, \alpha)$, and a nonzero positive element $z \in A \rtimes_{\alpha} G$, there exist a projection $e \in A \subset A \rtimes_{\alpha} \mathbf{Z}$, a unital subslgebra $D \subset eC^*(\mathbf{Z}, A, \alpha)e$, and a projection $f \in A$, and an isomorphism $\phi \colon M_2 \otimes fAf \to D$ such that

- (1) With matrix units (e_{ij}) for M_2 , we have $\phi(e_{11} \otimes a) = a$ for $a \in fAf$ and $\phi(e_{ii} \otimes e) \in A$ for i = 1, 2.
- (2) $\|\phi(e_{22}\otimes a)-\alpha(a)\|<\epsilon\|a\|$ for all $a\in fAf$.
- (3) $e = \sum_{i=1}^{2} \phi(e_{ii} \otimes f)$.
- (4) $eae \subset_{\varepsilon} D$ for all $a \in F$.
- (5) 1-e is Murray-von Neumann equivalent in $A \rtimes_{\alpha} G$ a projection in $\overline{zC^*(\mathbf{Z},A,\alpha)z}$.

Theorem 14. Let C be a class of infinite dimensional stably finite separable unital C^* -algebras which is closed under the following conditions:

- (1) $A \in \mathcal{C}$ and $B \cong A$, then $B \in \mathcal{C}$.
- (2) If $A \in \mathcal{C}$ and $n \in \mathbb{N}$, then $M_n(A) \in \mathcal{C}$.
- (3) If $A \in \mathcal{C}$ and $p \in A$ is a nonzero projection, then $pAp \in \mathcal{C}$.

For any simple C*-algebra $A \in TAC$ with Property SP if an automorphism α has the tracial cyclic Rokhlin property, then the crossed product algebra $C^*(\mathbf{Z}, A, \alpha)$ belongs to the class TAC.

Corollary 15. Let A be an infinite dimensional simple separable unital C^* -algebra with stable rank one and Property SP, and let $\alpha \in \operatorname{Aut}(A)$ be an automorphism with tracial cyclic Rokhlin property. Then $C^*(\mathbf{Z}, A, \alpha)$ has stable rank one.

Theorem 16. Let A be an infinite dimensional simple unital C*-algebra with tracial topological rank points more than or equal to k, and $\alpha \in \operatorname{Aut}(A)$ is an automorphism with tracial cyclic Rokhlin property. Then $C^*(\mathbf{Z},A,\alpha)$ has tracial topological rank more that or equal to k.

References

- [1] D. Archey, Crossed product C*-algebras by finite group actions with the tracial Rokhlin property, arXiv:0902.2865.
- [2] B. Blackadar, A. Alexander, and M. Rørdam, Approximately central matric units and the structure of noncommutative tori, K-theory, 6, p. 267 284.
- [3] R. J. Blattner, M. Cohen and S. Montgomery, Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. **298** (1986), p. 671–711.
- [4] L. G. Brown and G. K. Pedersen, C^* -algebras of real rank zero, J. Funct. Anal. **99**(1991), p. 131–149.
- [5] G. A. Elliott and Z. Niu, On tracial approximation, Journal of Functional Analysis **254**(2008), p. 396 440.
- [6] R. H. Herman and V. F. R. Jones, Period two automorphisms of UHF C*-algebras, J. Funct. Anal. 45(1982), p. 169–176.

- [7] R. H. Herman and V. F. R. Jones, Models of finite group actions, Math. Scand. 52(1983), p. 312–320.
- [8] J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), p. 318–340.
- [9] M. Izumi, *Inclusions of simple C*-algebras*, J. reine angew. Math. **547**(2002), p. 97–138.
- [10] M. Izumi, Finite group actions on C*-algebras with the Rohlin property-I, Duke Math. J. 122(2004), p. 233-280.
- [11] J. A. Jeong and H. Osaka, Extremally rich C*crossed products and the cancellation property, J. Austral. Math. Soc. (Series A) 64(1998), p. 285 - 301.
- [12] J. A. Jeong, H. Osaka, N. C. Phillips and T. Teruya, Cancellation for inclusions of C*algebras of finite depth, to appear in Indiana U. Math J. arXiv:0704.3645v1 [math.OA].

- [13] J. A. Jeong and G. H. Park, Saturated actions by finite dimensional Hopf *-algebras on C*-algebras Intern. J. Math **19**(2008), p. 125–144.
- [14] X. Jiang and H. Sue, On a simple unital projectionless C*-algebras Amer. J. Math 121(1999), p. 359–413.
- [15] J. F. R. Jones, *Index for subfactors*, Inventiones Math. **72**(1983), p. 1–25
- [16] A. Kishimoto, Outer automorphisms and reduced crossed products of simple C*-algebras, Commun. Math. Phys. **81**(1981), p. 429 435...
- [17] A. Kishimoto, Automorphisms of AT algebras with Rohlin property, J. Operator Theory ${\bf 40}(1998)$ p. 277–294.
- [18] A. Kishimoto, Unbouded derivations in AT algebras, J. Funct. Anal. 160(1998), p. 270– 311.
- [19] K. Kodaka, H. Osaka, and T. Teruya, The Rohlin property for inclusions of C*-algebras

- with a finite Watatani Index, To appear in The Memoir of the A. M. S.
- [20] H. Lin, An Introduction to the Classification of Amenable C*-algebras, World Scientific, River Edge NJ, 2001.
- [21] H. Lin and H. Osaka, *The Rokhlin property* and the tracial topological rank, J. Funct. Anal. **218**(2005), p. 475–494.
- [22] H. Nakamura, Aperiodic automorphisms of nuclear purely infinite simple C*-algebras, Ergodic Theory Dynam. Systems 20(2000), p. 1749–1765.
- [23] T. A. Loring, Lifting Solutions to Perturbing Problems in C*-algebras, Fields Institute Monographs no. 8, American Mathematical Society, Providence RI, 1997.
- [24] H. Osaka, SP-Property for a pair of C^* -algebras, J. Operator Theory **46**(2001), p. 159 171.
- [25] H. Osaka and N. C. Phillips, Crossed

- products by finite group actions with the Rokhlin property, arXiv:math.OA/0704.3651.
- [26] N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C*-algebras arXiv:math.OA/0609782.
- [27] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46(1983), p. 301–333.
- [28] M. Rørdam, Classification of nuclear, simple C*-algebras, Encyclopaedia Math. Sci., 126, Springer, Berlin, 2002.
- [29] M. E. Sweedler, *Hopf algebras*, Benjamin, New York, 1969.
- [30] W. Szymański and C. Peligrad, Saturated actions of finite dimensional Hopf *-algebras on C*-algebras, Math. Scand. **75** (1994), p. 217–239.
- [31] Y. Watatani, *Index for C*-subalgebras*, Mem. Amer. Math. Soc. **424**, Amer. Math. Soc., Providence, R. I., (1990).